Adaptive Data Analysis and Processing Technology (ADAPT) for Spacecraft

Kim Fowler, Carl Mills, Glenn Hines, Ann Garrison-Darrin, Richard F. Conde, Harry Eaton June 24, 2003

Summary Overview

- Adaptable system
 - Prototype reconfigurable processor using FPGA
 - Demonstrating platform
 - Data processing
 - Control systems
 - Autonomous correction following SEU
 - New configurations
- Flexibility of software
- Speed of hardware

Background

- Needs
 - On board data processing
 - Reduced development and operational costs
 - Future missions
- Adaptive computing an essential element
 - Data processing
 - Autonomous operations
 - Optimize operations

Background – Software to FPGAs

- First generation systems
 - General purpose processors
 - Custom circuits and ASICs
- System flexibility associated with software
- Second generation systems and FPGAs
 - Execution speed approaching ASIC
 - Programmability
 - System reconfiguration now possible

Background – AIM

- Adaptive Instrument Module (AIM)
- Australian FedSat-1
 - Launched December 14, 2002
- Xilinx FPGA
- Configuration and read back verification in software
- Gas and Aerosol Monitoring Sensorcraft (GAMS)
 - LaRC Reconfigurable Data Systems Smart Module

AIM Module and FedSat

Next Generation - ADAPT

ADAPT

ADAPT Block Diagram

ADAPT Development

- SRAM-based
- Minimize data handling
 - Satellite
 - Ground
- NASA LaRC instrument design and software
- JHU/APL hardware

Current Status

- Board fabricated
- Xilinx Virtex II FPGAs verified
 - Read back of configuration files
 - Correction of upsets (e.g. SEUs)
 - Flash programming of configuration stream
- Finishing CompactPCI host and chassis

Planned Work

- Final development of PCI interface
- Finish software utilities for programming various tasks
- Radiation test of board
 - Total dose
 - SEU

Applications

- Microwave Radiometer: digital correlator processing for up to four I/Q channels
- Fourier Transform Spectrometer (FTS): motion control, based on PID control algorithm, for a linear motor stage
- Fabry-Perot Interferometer: etalon plate displacement control through control of three PZT actuators based on capacitance measurement feedback

ADAPT Novelty and Utility

Summary Points - 1

Engineering setup for science observations

- Load configuration file into FPGA
- Mission only needs to specify file
- Loading takes about 1 second
- ADAPT can store about 20 FPGA configurations

Performance

Fault tolerance

- Partial failure remediated by loading a new configuration file that maps around failure
- Two FPGAs, if one fails completely, use the other

Summary Points - 2

- 17 different I/O standards flight qualification independent of hardware design
- Testing concurrent with design and programming of FPGAs
- SRAM-based FPGAs
 - Reconfigure in flight
 - Overcome both hardware and software errors

Technical Challenges

- Configuration SRAM susceptible to SEU
 - Check configuration every few seconds
 - Reload correct configuration if needed
- Packaging 560-pin ceramic grid column array
- Algorithms for self-healing
 - fall back is read-back verification

